
Everyone Talks About Insecure Randomness, But Nobody

Does Anything About It

In which I take a crack at pointing a neural network at random

noise, and achieve 95+% predictive bitwise accuracy against my

hated foe in this world, Xorshift128.

"Any one who considers arithmetical methods of producing random

digits is, of course, in a state of sin."

John Von Neumann

What exactly are you up to here?

The motivation for this blog was a secure code review a few years ago, when

looking at a client's email token generation . Frankly, I don't remember what

their code looked like at all, but it probably looked something like this:

"""gotta make a token and send it to the client!"""
very_random_number = get_random_number()
two_factor_token = convert_representation(very_random_number)
send_email("Your two factor authentication token is:"

+two_factor_token,user_email)
save_token_to_user(user_id,two_factor_token)

Code like this undergirds the security of much of the internet. A user wants to

reset their password, so they enter their email. We generate a secret code and

send it to their email; opening the link in the email proves that the requestor

is legitimate. Sometimes we text codes like this to users when they try to

login to their banks; this type of association between a random number and a

user is also the backbone of a huge chunk of cookie-based authentication.

Is this code secure? Well, it depends. Naturally, we might attack the email

component (as emails are sometimes sent unencrypted, whoops) or we might

attack the association between the data (maybe the token and the email are

derived from attacker controlled data or whatever). The quality of the random

number generation here matters as well, at least in theory: some random

number generators are predictable, while others are provably difficult to

attack. If we could predict this, it would be super bad- we'd just trigger the

email to the victim, somehow predict the RNG, and be on our way. On the

other hand, even if we are able to 'predict' this, we are still in trouble: there is

no obvious way to go about it without prior knowledge of what

convert_representation is up to.

I think machine learning provides the bridge here. The thought has hung in

my mind for a few years, in fact; I've picked the brains of everyone I know

remotely related to the field, and I've even hired some people to take a crack

at it. So far, I haven't seen any prior literature suggesting that it's been possible

or done, and nobody was really sure how to approach it. Finally, thanks to a

generous grant from the Phil Brass Weird Ideas Foundation  I was able to

take a few weeks to think about it methodically.

1 I don't actually work as an RNN jockey for

work- I'm a security consultant.
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2 AKA DirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefenseDirectDefense who was happy to sponsor

this research while I was not busy bug hunting

for them!
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The rest of this blog is structured in a pretty straightforward way: I talk about

how numbers are generated at random in a computer, then talk about how to

transform that notion of randomness into a learnable problem . Not

surprisingly, I will then solve that problem, and propose a roadmap for how to

continue chipping away at the distance between my current progress and a

usable attack.

Our Constant State of Sin

Computers, these fucked up little rocks we have forced to think, are gambling

creatures. Despite the rigid constraints that we have imposed on them, we

sometimes instead demand them to be fickle beyond our own capabilities, to

choose a number more wildly than any human dare dream. For example, by

invoking Xorshift128, a rather stylishly named fellow, you can choose a

number between zero and about four billion (2**32, to be precise), which is a

number that, while you do not often have a reason to choose at random, is at

least a number whose neighbors you encounter at least occasionally. More

excitingly, you can invoke this function a staggering 2**128 times  before you

encounter a repetition in its pattern of randomness.

But how? I hear you cry. That is to say, A particular problem arises here, the

one I think Von Neumann was referring to above: programming a computer

is the art of telling it exactly what you want it to do, more or less in advance,

and telling it exactly what random stuff to come up with, in advance, both

defeats the purpose of the program in the first place and also poses fascinating

logical challenges at the programming level. Certainly you do not have time

to roll four billion of anything, and even if you did, writing each of those

numbers down in some way would be a miserable use of time and hard disk

space. On the other hand, cycling through just a few of the available numbers

also sounds wrong; if you cycle through just a few hundred of the integers

between 0 and 2**32, you're not really providing a lot of randomness.

We will set aside the question of what randomness really is and think about it

from a programming perspective. We can define a Random Number

Generator (RNG) as something that outputs a sequence of numbers. In order

to make sure that they are as random as possible, we're also going to introduce

something new: state. The state gets passed into this RNG function, and in

addition to outputting a random-ish number, it is going to output new state-

this state will be as big or bigger (usually much bigger) than the output. Then

we're just going to feed this output state back into the RNG to generate the

next number in the sequence- and that's going to give us new state, which

will let us continue this for quite a while. One point of confusion is that

sometimes the output is also used as the state .

To take this into the concrete, we will consider an RNG, the Middle-square

method. Relatively ancient by RNG standards, it was invented by Von

Neumann sometime in the 1940s, when he was busy inventing almost

everything else. A number of N digits is squared, and the N/2 middle digits of

the result are taken both as the output as well as the state to square for the next

iteration. The simplest case, n=2, works as follows: we start with 43, square it

to produce 1849, and then take the middle two digits to get our result, 84.

This 84 is also our new state, so next time we're fiending for the results of a

d100, we square it again, 7056, taking the middle to get 5, our output and our

new state. Okay, so next is 25, which we'll call 0025, which gives us 2, which

gives us 0004, translated as 0...

Uh oh. We seem to have run into a dead end here. 0 squared is of course 0.

These numbers are not looking so random anymore. In fact, the behavior is

pretty bad no matter what number you begin with. The figure below lists all

3 A basic knowledge of machine learning, and

especially gradient descent will be helpful for

understanding some of my thought process

through this blog.
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4 More or less the number of atoms in every

living person on earth.
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5 Astute readers will wonder: where does the

original state come from? Fascinatingly,

movement of the mouse, entries into the

keyboard, and other minutiae of computer

operation are used to generate a very small

amount of randomness- that is, at some level the

start comes from the simple uncertainty of

everyday computer use. There isn't a lot of

randomness available here, so the RNG serves to

stretch it out over a longer period of time.
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the states/outputs showing that the tendency to degrade towards cycles is

pretty unavoidable.

00010407
71

0205842936191412114692777642
69

89
37
58

43
622516135681

87
6841
75

32187227
61
82

73
45
55
95

03060809649344219631
63

38
33
782817

9154

10903048221534
3566
65
85

59
6726

705223
3986 50

6040204774888394
49
8053

99
97

51
98

2457
79

Performance for the version with 4 digits of state is better; the average length

of time before being trapped in a cycle is after 43 outputs . That code looks

something like this, just so you get the idea:

def von_neumann_generator(state):
"""The version with a 4 digit state/output
not to be confused with the one above, that
has two."""

#e.g. 1234**2->1522756
square = state**2 

#1522756 -> 01522756
formattedSquare = "%08d" % square

#01522756 -> 5227
next_state = output = int(formattedSquare[2:6])
return (next_state,output)

state = 1234
for i in range(20):

state,output = von_neumann_generator(state)
print(output)

You can see in the above example that the state and the output are identical,

but there is no particular reason this has to be the case. For example, we could

have the state be the inner four numbers, with the output being the outer four

numbers:

Directed graph of all 100 2-digit pseudorandom

numbers obtained using the middle-square method, by

CMG Lee.

6 Another useful property of these RNGs is that

it is pretty obvious when they are starting to

break down- among the 10000 numbers the 4-

digit version can output, only 0, 9600, 1600,
5600, 8100, 100, 4100, 2916, 2500,
3009, 5030, 3600, 7600, 3792, 2100,
6100, 540 immediately lead to decay.
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def much_better_von_neumann_generator(state):
square = state**2 # e.g. 1234**2->1522756
formattedSquare = "%08d"%square
output = int(formattedSquare[0:2]+formattedSquare[6:])
next_state = int(formattedSquare[2:6])
return (next_state,output)

state = 1234
for i in range(40):

state,output = much_better_von_neumann_generator(state)
print(output)

This RNG is also not quite ready for prime time, but the relationship

between the output and state is already harder to guess. However, they are

clearly interconnected in some causal sense, a fact we will return to in a bit. For

now, we are starting to see a few important tensions in the design of RNGs

already:

Unpredictability – Increasing the number of digits in the output/state

increases the unpredictability of the output. Sometimes less adroitly

designed algorithms (like the one above) will eventually degenerate to

some kind of undesirable low-randomness state, but most ones in use

in computers simply will iterate through their entire state in some

order before returning to the original one. Among the generators that

look superficially okay, there are a lot of mathematically interesting

ways to verify this intuition: we can count the number of bits to make

sure it is evenly distributed; we can figure out if the runs of ones and

zeros look OK, and a horde of other more complex criteria. On the far

end of this difficulty spectrum lies the Cryptographically Secure Pseudo

Random Number Generators (CSPRNGS), where someone has gone

through the trouble of proving that predicting the subsequent bits is

virtually impossible . So then, why don't we always just use

CSPRNGs? Well..

Performance – Unfortunately, CSPRNGs are pretty slow.

Opportunities for high-performance RNGs are actually more common

than you might imagine: almost every web site is constantly vomiting

a stream of random numbers to users who are visiting or logging in,

and in online games they are virtually ubiquitous. At the low end of

things, embedded devices (like your bitcoin-mining toaster, or IoT-

connected trash can) may need to more frugally use their available

CPU cycles and so are not willing to sacrifice precious cycles just for

needless cryptographic guarantees. Or maybe you are writing Doom in

1993 and you just need the fastest thing that looks kinda random, so

you just scramble the numbers from 0 to 255 and hard-code them in a

table. So just using a CSPRNG for everything isn't necessarily right .

That being said, the high-performant algorithms in use these days are

much better than the one I demoed above.

Political – Okay, so this doesn't really fit with the other two in an easy

way but it has to be mentioned. Sometimes the NSA comes out of the

black obelisk or whatever and tells you that certain changes to your

RNG have to be made. Sometimes they release a standard for a new

Very Secure Ultra Good RNG and it's backdoored. Sometimes your

government tries to ban exporting the very concept of secure code to

anyone and so everyone else has to use bad crypto until you can get

your friend drunk enough to get a Perl tattoo of RSA's encryption

algorithm the night before his flight to Amsterdam. Sometimes your

coworker printed out an article about how Mersenne Twisters are vile

beyond God's redemption, and so using one will get you fired from

your job at the stochastic matrix factory . Cryptography is just a very

weird field in some ways and so there are lots of other reasons that

people have very intense feelings about it.

7 But not necessarily completely impossible.

Predicting these bits (or more precisely,

discerning the output from true random

noise) is in NP, a class of problems in

computer science which are thought to be

generally computationally infeasible. Because

neural networks are well-understood to be

capable of approximating some NP

functions, it is actually not clear to me if

there is an a priori reason to believe a NN

could never learn to predict one.
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8 And frankly, they are kind of a pain in the

ass to implement, so by the time your

language has blown up in popularity you

already implemented random with a

Mersenne Twister and everyone is yelling at

you.
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This has led to an exciting and dynamic variety of RNGs that are constructed

from a few general primitives. You need operations that you can apply

repeatedly to cycle through a very fixed list of outputs, which means most of

the operations we use on a daily basis don't really suffice. Bitwise operations

(converting two numbers to their binary representation and shifting or

otherwise transforming them) are combined with modular arithmetic and a

cursory knowledge of group theory to robustly create numbers that look

indistinguishable from noise at first glance. Quick, what do

3701687786,458299110,2500872618, and 3633119408 have in common? They are

the first four outputs from my implementation of Xorshift128, and as far as I

know, that is more or less their only interesting relationship. Even without the

rigorous mathematical guarantees of their more cryptographically secure

brethren, they and their two million nearest neighbors in the sequence are

alien to me, as predictable as the roll of the waves of the ocean.

It doesn't mean that doing so is impossible, however, it is just hard. These

functions are generally reversible in the mathematical sense, and their crunchy

bitwise nature has made them the target of SAT solver-wielding lunatics .

However, for most real-world applications, predictability is also made more

or less infeasible by a few interrelated factors:

Encoding – RNGs are consumed by a variety of different sources, and

all of them have a variety of decisions about encoding: some are

making 6 digit two-factor authentication tokens, some are doing 2d6

sword damage, some are outputting 32 character hexadecimal session

tokens. Also, the nature of this encoding is not necessarily clear in the

case of a closed source application. We also don't know how the excess

entropy for a specific random number is being used: the invoking API

may simply truncate the top 29 bits of randomness to roll 1d8, or it

may slyly apportion the output into fixed 8 bit slices to improve

performance by reducing calls, or something else.

Transformations – Another problem is that other entropy preserving

transformations are possible. Bit order may just be straight up reversed

for some reason, or maybe the developer decided to XOR the output

with "TIMROX" or whatever. Or maybe it's just multiplied by 2

because that's how much damage the laser pistol does.

Continuity– The above both assume that you get perfect vision into

the output of the algorithm, which is uncommon because normally an

application's randomized output is being consumed by different

mutually exclusive groups of users. You never see another user's session

or 2fa token; you never see the random damage from another warrior

wandering the lonely hills of the sea witch or whatever. This one is

especially challenging because you also don't really know how much of

the output you are missing; there is no clue as to how many steps

forward the state has shuffled.

These underlying problems are very important, but they are not essential to

what I believe is the hardest part of the problem, which is getting a neural

network to learn any of this in the first place. So I decided to start there: the

above-mentioned Xorshift128 has 128 bits of state and 32 bits out output. But

without looking at the state, how do we attack this problem?

The Math Part

After thinking about the above problems for a while, they eventually

congealed into my brain into something useful. There is some function F:

statet-1->(statet,outputt). But this means that the state is deterministic from

the previous state, so we can apply this as many times as we want. For

10 My personal favorite of these is definitely the

guy who bopped an online casino in real timereal timereal timereal timereal timereal timereal timereal timereal timereal timereal timereal timereal time.
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example:F: statet-4->(outputt-3,outputt-2,outputt-1,outputt,statet).There

are two interesting things to observe here:

There is good reason to believe that each state that can be output by

this function lines up with exactly one set of 4 outputs. It's clear that

there is not a one-to-one relationship between output and state,

because the output is 32 bits for a given step, and the state is 128 bits.

So the minimum number of outputs we need is 4, if we want to be able

to uniquely map these. Do we need more than that? Probably not, if

the RNG is well designed .

If you are willing to entertain my wild notions that the state and the

sequence of outputs are uniquely linked, you don't really need to think

about the state at all. That is, if you're willing to believe that the next 4

32-bit outputs of Xorshift128 are uniquely mapped to a given 128 bit

state, then you don't really need to think about the state at all. Each

unique sequence of 4 numbers only appears once through the entire

2**128 bit state, and so if you have them and can predict that state, you

can easily predict the next number.

After the above pondering, I wondered how easy it was to train a neural

network  to learn the above function. That is, the obtuse F:(outputt-

4,outputt-3,outputt-2,outputt-1)->(outputt), which predicts the output of

Xorshift128 given only the previous four outputs. It almost certainly exists,

and there are some aspects of the problem that make it pretty appealing from

an ML perspective:

Lots of data – I can generate two trillion training examples relatively

easily. And there's no noise in the data. Unlike image detection where

the same cat can be photographed from a variety of angles in anywhere

from bright sunlight to darkness, all the data is pristine and beautiful.

Even data distribution – All of the data is relatively evenly distributed

over the problem space, as well. This means that overfitting is

relatively unlikely  because the inputs and outputs have a singular,

complex relationship.

Model design is simple – There are some complex and unpredictable

bit juggles which can happen between almost any two bits. These

sound like dense layers to me. There's also some kind of hidden state

which we want to learn over the sequence, which maps pretty well to

an LSTM. So we don't need any fundamental breakthroughs in model

design, at least at first glance.

I am going to change this data around a little. We will convert each 32 bit

output of Xorshift128 to its binary representation: each number will be

converted to a 32-bit list of, well, its bits. I know that this is the underlying

representation used by almost all RNG code, so it feels like a natural choice.

Additionally, each training case is (theoretically?) independent from

everything other than the previous 4 numbers, so we'll slice our list of every

single output into individual strides of that data: 1,2,3,4,5,6,7,8,9 becomes

[[1,2,3,4],[5]],([2,3,4,5],[6]). Then, each of those individual numbers is

converted to binary. That looks like the below, though I'll convert them to 4

bit numbers in this example so it's more manageable to read. Just pretend all

of these lists have a lot more zeros:

x1 = [[0,0,0,1],[0,0,1,0],[0,0,1,1],[0,1,0,0]] #[1,2,3,4]
y1 = [0,1,0,1] #5
x2 = [[0,0,1,0],[0,0,1,1],[0,1,0,0],[0,1,0,1]] #[2,3,4,5]
y2 = [0,1,1,0] #6

And so on. In machine learning terms, we would like to take this sequence of

length N and slice it into some tensors: a 32x4 input tensor and a 32x1 output

tensor. All that is standing between us and the finish line is writing some

11 It's clear that there are RNGs where you

do need more state. My brother provided

JOSHRNG, where OUTPUT=
state%10==0?state:0;state++. Even if

the state and the output are the same size

here, you don't always get useful output.

Probably the entropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropyentropy of the output sequence

is related here. The fact that my intutition

worked for this problem (which indeed

seems to be able to more or less perfectly

learn with only 4 previous outputs) may not

be useful for other problems in the family

though.
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12 We've arrived at the machine learning part of

the show. If you wanted to brush up before

diving in, now would be the time!
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performant numpy code that performs reshaping on multidimensional tensors.

Yes, nothing could go wrong there .

So the starting network is simple enough: An LSTM to capture state based

dependency, a few dense networks to cover the endless shuffling, then an easy

finish with a 32 bit final layer. Early experimentation more or less resembles

this:

model.add(LSTM(units=1024,activation='relu',input_shape=(4,32,),return_sequences=False,))
for depth in range(5):

model.add(Dense(512,activation='relu'))
model.add(Dense(32))

Our success is relatively easy to measure, as well- we'll just count the number

of correct bits in the output. And if we fail, well, we can just add more

network layers or network width until everything works out! All that's

standing between me and success is melting my beleaguered laptop's GPU.

Unfortunately, one small problem with the above approach is that it did not

work. Many opportunities for failure were covered in my machine learning

'education ': Network overfitting, the network learning a little bit and then

giving up, vanishing gradient problems from the intricacies of network design.

But in this case, several hundred steps with the default gradient descent

learned nothing; it stubbornly stuck to 50% accuracy  no matter how many

layers or how much data I added to the model. I decided to go back and

question my previous assumptions: What actually made this problem difficult

for neural networks?

One nasty reality is that, in some sense, the function is not smooth- small

perturbations in the input result in very drastic changes in the output. For

example, in image classification, a picture of a bear that has one pixel blacked

out is, in some sense, still a picture of a bear- similarly, two pictures of a bear

taken seconds apart from slightly different angles are both more or less

pictures of a bear. On the other hand, a change in bits of output from an RNG

suggests that the underlying state is different, which will have cascading

effects on subsequent calls . This is a result of the XOR function's relative

difficulty in modeling as a smoothly differentiable function. So in my mind,

the solution space is very 'spiky'.

Another problem is the predictor has to work super hard. There are 32 outputs

for each test case, and they are all (again, in theory) perfectly uncorrelated

with one another. Similarly, each input consists of broadly uncorrelated bits-

no two or three of them exhibit any obvious, discernable pattern. So both the

input and output data have no simple relationships, no obvious subproblems

to solve that can lead the network in the right direction. Or, to put it less

mathematically, this output is difficult to predict because it's designed to be as

unpredictable as possible. Oops!

The upsetting thing about these intuitions, to me, is the difficulty in verifying

them. This network has about six million parameters, which output some

kind of function f. We can measure this function f in terms of its accuracy on

the training set; thus, we can also think of all of the six million parameters as

a six million dimensional space that outputs some number between 0 (for a

function that somehow deliberately fucks everything up) and 1 (for one that

predicts everything perfectly) I'm sure it's pretty easy to have a network learn

to output only bits between 0 and 1; so most of the models expressed by this

dimensional space are going to be very close to .5. Sadly, I have no easy way to

model this enormous, messy space in a way that shows the entire thing; no

chance with my pathetic mortal brain of visualizing it like I would an

ordinary problem.

14 The resultant code in the script i will publish

below relies on the aptly named stride_tricks

module of numpy. Some free advice for you in

your future programming career: if you are

considering the use of a library function with

tricks in the name, your life may be leading you

to a place that you don't really want to go.
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15 Coursera, DeepAI, screaming at the Keras

documentation, cursing the god who brought me

into this world, etc.
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16 Which may sound good, but it is the expected

accuracy from guessing.
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17 Specifically, the avalanche property is something

RNGs try to aim for – we would like single bits

of state being different to change half of the bits

of the resulting output if we are making random

numbers, because that's what you would expect

from, well, random chance.
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18 This is a map between the big list of

parameters for the different neurons in the

network and the output. That is, all the

parameters [p1,p2...p6,000,000] generate a

function f, and the average performance of that

function on the training set is between 0 and 1.
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Having failed in my original task, I decided to step back and think about

what problems I might have in this noisy, monstrous mess of a space. Clearly

the data was spiky, but at what scale? I have no idea how densely the valid

solutions to this problem are packed in space, nor any idea how to find them.

So I wondered if the learning rate–the speed at which the network roamed

through this space. – could be big enough to skip over it entirely. There was

also no automatic guarantee that having a larger network was better- adding

more parameters made the remaining ones more sparsely filled. But too small

didn't seem great either- if the network was learning, perhaps it was far, far

too small to make sense of the problem space.

In the end, experimentation seemed like the only way forward. First with

brute-force and then the aptly named keras_tuner, I began to search my way

through the problem's hyperparameters – the speed at which it learned, the

complexity of the network, and so on. Most of these experiments were, of

course, fruitless, but I got some good stuff too:

Learning rate is everything – I looked through learning rates as small

as 10**-12 (resulting in constant, sad numeric underflow crashes) and

as large as 1. In this case the right answer was about 10**-3, but there is

no a priori I can see why any parameter is better or worse for a certain

RNG.

Extremely simple networks work – The end network is 1 LSTM and 5

Dense Keras layers, followed by an output layer the size of the RNG

output (32 bits). The small problem space (only 2**128 possible

outputs) is a possible factor here, or the underlying mathematical

simplicity of the transformation. The entire thing trains on my Geforce

RTX 2060 in a few hours, even thought it is the GPU equivalent of a

Toyota Corolla.

Overfitting is still a problem – Perhaps you spotted this naivety

earlier; I only trained the network on 200,000 inputs, reasoning that

overfitting was better than no fitting at all. In retrospect, very incorrect

to assume that it was impossible for overfitting to occur on any

problem.

Still, after an exhaustive search of the hyperparameters, I was making

progress- I upgraded to 600,000 training samples and chose the brute-forced

parameters. ~80% training, ~60% test. Still a stubborn gap, but the solution

was simple, right? Just add more data. Changing a single line of code shoved

in 2 million examples, which seemed fine.

Sadly, for the second time, things were not fine. In contrast to every other

machine learning problem I know of, where adding more training data makes

things work better, adding more data here made things work worse. In fact,

the model was unable to learn anything with 2,000,000 training examples.

Worse still, it learned nothing slowly, meaning I was spending agonizing hours

watching the epochs tick by with nothing to show for it.

Why is learning so poor? I decided to speculate wildly. One weakness in this

model design is that it is somewhat large compared to the size of the data-

6,000,000 or so parameters compared to only 2,000,000 pieces of training data.

In particular, the first LSTM layer is also quite wide compared to the size of

the problem . Maybe the gradients are very evenly dispersed across different

nodes, and averaging them out from many different inputs makes them cancel

out.

So, overfitting on the training set is obviously not desirable, but nor is not

fitting at all. My thought in the end was some kind of model tempering: I'd

start by running the model against a smaller version of the training set even

though it overfits. Getting near the correct function in the 'parameter space'

seemed to be quite a challenge for the larger model, and overfitting certainly

19 My idea for this unusually large layer was that

there was clearly a lot of state to remember

between steps, and having all of that state

perfectly preserved was nice. For the same reason

that changing some of the output greatly changes

the subsequently expected output, small noise in

the state of the RNG seems like it will fuck

everything up here.
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works here. Once I have an overfit, but kinda working model, I will train it

on the entire training dataset for a few epochs. The hope here is that although

the model will suddenly have to generalize, causing lots of movement in the

parameter space, the fact that it is somewhere in the right neighborhood

makes those jumps more likely to be somewhere that is useful for the whole

data set. After all, even if the function is overfitting, in some sense the smaller

training set is equally distributed through the input space, and so all of the

unlearned examples are pretty close. If this works, there's no reason to not do

it a few more times- every iteration should bring us closer and closer to the

correct f. 

Anyway, I think the results speak for themselves:

This model actually took a few times to succeed- previous runs were peaking

anywhere between 75% and 80%, with the tempering effect eventually unable

to make any progress (but never hurting things, either). Clearly these are local

minima, but why exactly this run escaped or to what extent better

performance is possible is not yet clear to me.  Still, just to make sure I wasn't

losing my mind, I verified it against 2 million separate examples that it had

never seen before and still saw the same robust performance.

This is a way to get to the correct function, but I suspect it wasn't the best

way. There are other promising lines of thought which I'd like to experiment

with, including:

Cosine activation function– Normal activation functions, which I

didn't really touch on here, are specially constructed to avoid real

analysis problems. My first thought was that cosine was an appealing

function for some of the intermediate activations for some interesting

reasons: addition of incoming weights naturally approximated the

XOR function, the input/output was bounded by -1,1. In the end it

didn't really work so well, but some kind of opportunity for the

network to flow through gates that use this function is one I'm looking

for in the future.

Smaller learning rate – I spent some time trying to tweak the learning

rate for the larger training set in order to get the model to learn, and

the problem is (at least in my testing) relatively sensitive to this rate.

Does a different learning rate affect the performance on a large number

of examples? It's an important question, even if it's unlikely to beat the

current performance of training on such a small number for most

epochs. Naturally decreasing the learning rate over time might work

too.

Model simplification – I started out with a pretty large model relative

to the training size, which seemed to (in the end) successfully create

the right network for the job. Model depths close to this size seem to

be OK, but I didn't do a lot of tests on the widths of different networks.

I'm not aware of any other information or research about the model

'tempering' technique I described above; I haven't even tested the hypothesis

20 I am keenly interested if enough cycles with

the full set T will cause catastrophic interference-

it did not in the limited epochs I ran the data

through, though.
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21 Shrewd tensorflow enthusiasts will note that

this is in wall time instead of measuring

performance by epoch. It turns out that

Tensorboard gets very sad when you try to restart

training epochs on the same model, something

you will probably notice if you try to run this

code.
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above that it is linked to the data being well-distributed in the space . This

is actually the first time I have built any type of novel model, which naturally

suggests that this problem has already been tackled before and that this

technique was already known. So rather than continue chipping away at it

with increasingly feral code, it seemed appropriate to release it for everyone

else to take a look. Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.Here is the code if you are into that.

Onward!

I've made good progress on the problem that spurred this research; I think that

predicting the sequence at all is the hardest thing to do . The road from here

to practical attacks has a few important problems, some of which I've touched

on before:

Generalization – How applicable is this architecture to other RNGs in

the search space? I think there is good reason to believe that this will

generalize to other RNGs in the same family- Xorshift128+, this

research project's original target, differs only in the number and size of

its shifts and xors. So there are no new types of functions to learn here.

On the other hand, the Mersenne Twister is rocking 2**219937−1 bits

of state, so there is a good opportunity to see how much this approach

scales.

Transformation – Most web applications rely on a fixed RNG

provided by the platform or the target language. There is no particular

reason to believe that I couldn't train a specific model for each

platform's RNG. We'll still need to learn the correct transformation of

the data from RNG output to rendering in the web app, but with

Transfer Learning we can use the RNG network and just add a few

layers to learn the transformation as well. The underlying learning

problem is probably much simpler here: for example, each bit of the

base64 encoding of some random output is probably only correlated

with a few adjacent bits from its input, an architecture well-suited to a

convolutional network. We see learning on complex image tasks here

with thousands of training data (rather than millions) when transfer

learning is used. It seems reasonable to guess that we can hope for good

speedups like this on a problem where the data being dealt with is

much smaller.

Harder transformations – What if some of the data is just thrown out?

Like, maybe your 2fa token is just RNG_Output%10000. My intuition is

that this just stretches the amount of data that's required out- if we

only get 16 bits of output from the RNG, we just need twice as many

outputs. 

Missing data – Another obvious problem: what if we just get small

chunks of the data, rather than all of it? In some sense, we are still

getting decent data here if we're only missing one out of ten or one out

of twenty cookies/2fa tokens/etc- 90% of the slices will still be

correct. This will introduce noise into the final network, which is not

desirable (especially on a problem that is seemingly so sensitive to

noise.) On the other hand, there is clearly some structure to be learned

here: if you are guessing how many tokens you have skipped over, ten

is more likely than two billion, which is more likely than 10**20,

which is still barely scratching the surface of the state of the RNG.

This is clearly the hardest remaining problem.

The interesting thing about both of the latter problems is that they require a

certain discipline in the network's learning - the less training data you require

here, the more likely it is you can get a string of uninterrupted sequences. This

means that the surrounding architecture has to be as simple as possible. My

22 It resembles data pre-training of course, but

normally you don't pre-train on the same data

set.
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23 But I don't have high confidence in this guess.

The cost of intuition taking me from place to

place is that sometimes intuition leads you down

a dark alleyway and leaves you in a dumpster

with no kidneys.
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24 I will probably be testing this right as

you're reading this!
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first thought here is that some kind of invertible function would be nice to

learn. If we can somehow define the transformation to and from, say, base64,

with the same parameters, we halve the number of necessary ones and greatly

reduce training complexity.

What do I take away from this?

The reaction I got from most of the people I showed this research to was

"Wait, what?". Artificial intelligence in security has struggled thus far to

catch on for the offensive side of things; countless data panopticons are

excitedly hoovering up IDS data and doing their best to make it impossible to

breach networks in the first place. As the ML research equivalent of a feral

dog, I have no ability to work on these problems; I just don't have enough data

or computing power. On the other hand, this problem excites me because it's

so completely different: the data is easily available, and the network is simple

enough to train on my gaming laptop in a few hours, and the underlying

innovations can come from different designs. There is good reason to believe

this will be true for most practical attacks as well, since we have to very

greatly constrain the amount of learning for the problem in order to get

practical attacks from only a few thousand tokens.

So I would take that away as the first lesson- attacking this problem isn't as

hard as it seems. None of this is. I've never even built a network from scratch

before, meaning it's pretty simple for a beginner to attack  There's not even

any guarantee that the foundations I've laid here are the best way to approach

the problem, but they do work.

The second lesson is much simpler- it's probably time to start upgrading to

more secure random number generators. It's not clear to me that CSPRNGs

are invulnerable to this problem, but it's certainly easier to believe they will be

harder to get through . Additionally, there were already plenty of good

reasons to start limiting 2fa token output per hour, but hopefully this article

has provided several extra ones.

If you have any questions or comments about this article, please feel free to email me at

john@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.netjohn@airza.net.

Acknowledgements

To Phil Brass, for seeing the underlying value of this research, and to our

mutual patron, Direct DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect DefenseDirect Defense, for being willing to sponsor it. Naturally, I

highly recommend them for your computer security based needs ;)

To Joseph T, who I worked with on a much earlier incarnation of this model

that didn't work, but helped me understand how to implement my own

version.

To everyone who was willing to review this long-ass article.

Special thanks to Tsukimi, who was a constant companion in my 4 AM

debugging... once she figured out how warm the GPU fan was.

25 A very sobering thought is that there are... 👁
organizations👁 with much more computing

power and manpower than I have to work on

these problems and a much more robust

understanding of the underlying cryptography.

Haunting!
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26 On the other hand, if CSPRNGs are not

invulnerable to these techniques, the internet will

become a much more exciting place to live!
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